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1H NMR fingerprints of virgin olive oils (VOOs) from the Mediterranean basin (three harvests) were

analyzed by principal component analysis, linear discriminant analysis (LDA), and partial least-

squares discriminant analysis (PLS-DA) to determine their geographical origin at the national,

regional, or PDO level. Further δ13C and δ2H measurements were performed by isotope ratio mass

spectrometry (IRMS). LDA and PLS-DA achieved consistent results for the characterization of PDO

Riviera Ligure VOOs. PLS-DA afforded the best model: for the Liguria class, 92% of the oils were

correctly classified in the modeling step, and 88% of the oils were properly predicted in the external

validation; for the non-Liguria class, 90 and 86% of hits were obtained, respectively. A stable and

robust PLS-DA model was obtained to authenticate VOOs from Sicily: the recognition abilities were

98% for Sicilian oils and 89% for non-Sicilian ones, and the prediction abilities were 93 and 86%,

respectively. More than 85% of the oils of both categories were properly predicted in the external

validation. Greek and non-Greek VOOs were properly classified by PLS-DA: >90% of the samples

were correctly predicted in the cross-validation and external validation. Stable isotopes provided

complementary geographical information to the 1H NMR fingerprints of the VOOs.
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INTRODUCTION

Olive oil is the oil extracted exclusively from the fruit of Olea
europaea L. only by means of mechanical methods or other
physical procedures that do not cause any alteration of the
glyceric structure of the oil and preserve its characteristic proper-
ties (1). At present, 77%of the global production of olive oil takes
place in the Mediterranean basin, mainly in Spain, Italy, and
Greece. The characterization of the geographical origin of virgin
olive oil (VOO) is becoming increasingly important. VOOs are
permitted to be marketed under a Protected Designation of
Origin (PDO), Protected Geographical Indication (PGI), or
Traditional Specialty Guaranteed (TSG) label, on the basis of
their area and methods of production [Council Regulations
(EEC) 2081/92 and 2082/92]. The European Commission has
already registered in the “Register of protected designations of
origin and protected geographical indications” 95 PDO and PGI
olive oils, produced in Spain, Italy,Greece, Portugal, France, and
Slovenia. As can be expected, given the financial benefits asso-
ciated with these prestigious labels, it is very likely that economic
fraud occurs (e.g., labeling a non-PDO product as a PDO one
or adulteration with olive oils that do not fulfill the PDO

requirements). Other fraudulent practices that were detected by
the state security forces were the adulteration of olive oils with
low-grade oils and themislabeling of olive oils. For instance, olive
oil imported into Italy from Tunisia, Greece, and Spain was
relabeled as the finest Italian product. Other ploys include
labeling inferior quality oil as extra virgin olive oil and claiming
European Union (EU) subsidies for growing olives in Italy while
actually importing them from elsewhere. The EU is about to
establish new labeling rules that will make origin labeling com-
pulsory for virgin and extra virgin labeled olive oil. Therefore, oil
produced from olives from just one EU country will have to be
labeled with the name of the country of origin. Therefore,
analytical methods are urgently needed to guarantee the authen-
ticity and traceability of PDO and PGI olive oils, as well as the
country of provenance of the olive oil, to help prevent illicit
practices in this sector and to support the antifraud authorities
dealing with these issues.

More than 98% of VOO is made up of triglycerides and the
remaining 1-2% of minor components such as squalene,
R-tocopherol, phytosterols, phenolic compounds, carotenoids,
and terpenic alcohols, which constitute the unsaponifiable frac-
tion of the oil (1). The chemical composition of this fraction
may vary both qualitatively and quantitatively depending on
vegetal species, climatic conditions, extraction and refining pro-
cedures, and storage conditions, which also greatly influence the
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organoleptic quality and stability of the oil (1). The diversity and
interdependence among all of these factors makes it highly
unlikely that these influences would be the same in different
regions. Therefore, the geographical characterization of VOO
addresses all of these agronomic, pedoclimatic, and botanical
aspects that are unique to the oil of each origin (2).

Fingerprinting techniques such as NMR (3, 4), NIR (5),
MIR (6), FT-IR, FT-MIR,and FT-Raman (7-10) spectrosco-
pies, MS (11), GC�GC-Tof-MS (12-14), and DNA fingerprint-
ing (15, 16) have been used for the determination of food
authenticity (17). These types of techniques are particularly
attractive because they are nonselective, require little or no
sample pretreatment, use small amounts of organic solvents or
reagents, and typically require only a few minutes per sample.
Chemometric analysis ofNIR spectra of virgin olive oils allows us
to determine its composition and geographical origin (18). 1H,
13C, and/or 31P NMR analyses of the bulk oil (19, 20) or the
unsaponifiable fraction of olive oil (21), in combination with
multivariate techniques, have been used to distinguish VOOs
according to their geographical origin. 1H NMR and the more
recently developed hyphenated LC-SPE-NMR technique have
been applied to study phenolic compounds in the polar fraction of
olive oil for authentication purposes (22). IRMS methods have
also beenused for the geographical characterization of olive oil by
analyzing the alcohol and sterol fractions (23). The study of δ13C
variability of olive oils in several harvests showed that it was not
dependent on either the degree of ripeness ormaturity state of the
olives or the olive variety (24). The isotopic fractionation ofC and
H is linked to pedoclimatic factors (soil, climate, and latitude);
therefore, these data may contribute to the geographical discri-
mination of olive oils.

In the present study, the 1HNMR fingerprints of a statistically
significant number of authentic VOOs from seven countries,
namely, Italy, Spain, Greece, France, Turkey, Cyprus, and Syria,
and from three different harvests (2004/2005, 2005/2006, and
2006/2007) were analyzed by pattern recognition and classifica-
tion techniques, such as principal component analysis (PCA),
linear discriminant analysis (LDA), and partial least-squares
discriminant analysis (PLS-DA), to evaluate the best approach
to identify the geographical origin at the national, regional, and/
or PDO level. Further isotopic measurements of δ13C and δ2H
were performed on the samples by isotope ratio mass spectro-
metry (IRMS) to help with the geographical discrimination of
VOOs. This work was developed within the framework of the
EU TRACE project (http://www.trace.eu.org) with the aim of
supporting antifraud authorities in dealing with the prevention
and detection of illicit practices in the olive oil sector. Moreover,
this study is also of interest to consumers, honest oil producers,
and regulatory bodies because it will contribute to ensure the
authenticity and traceability of such a high-value foodstuff.

MATERIALS AND METHODS

Chemicals. Deuterated chloroform for NMR analysis (99.8 atom %
D) was provided by Sigma-Aldrich Chemie (Steinheim, Germany).

PlantMaterial.Virgin olive oils (963 samples) from seven countries of
the Mediterranean basin, namely, Italy (661 VOOs), Spain (144 VOOs),
Greece (97 VOOs), France (39 VOOs), Turkey (14 VOOs), Cyprus
(6 VOOs), and Syria (2 VOOs), were collected directly from the producers
(olive oil mills) frommost of themain producing regions of these countries
during three harvests (2004/2005, 2005/2006, and 2006/2007). The sample
collection was carried out with the collaboration of Laboratorio Arbitral
Agroalimentario (Ministry of Agriculture and Fishery, Spain), General
Chemical State Laboratory D’xy Athinon (Greece), General State
Laboratory (Ministry of Health, Cyprus), Departamento de Quı́mica
Orgánica - Universidad de C�ordoba (Spain), Istituto di Metodologie
Chimiche (CNR, UNAPROL, Dipartimento di Chimica e Technologie

Farmaceutiche ed Alimentari, Universit�a di Genova, Italia), Fondazione
Edmund Mach (Istituto San Michele all’Adige, Italy), and Eurofins
Scientific Analytics (France), within the framework of the EU TRACE
project. The true type (virgin or extra virgin) and origin of the olive oils at
the national, regional, and PDO level were assured. The Italian samples
were representative of the olive oil producing areas, which are markedly
influenced by pedoclimatic factors from the north to the south of the
country.

NMR Analysis. Aliquots of 40 μL of each VOO were dissolved in
200 μLof deuterated chloroform, shaken in a vortex, and placed in a 2mm
NMR capillary. The 1HNMR experiments were performed at 300 K on a
Bruker (Rheinstetten, Germany) Avance 500 (nominal frequency of
500.13 MHz) equipped with a 2.5 mm broadband inverse probe. The
spectra were recorded using a 7.5 μs pulse (90�), an acquisition time of 3.0 s
(32K data points), a total recycling time of 4.0 s, a spectral width of 5500
Hz (11 ppm), and 64 scans (þ 4 dummy scans), with no sample rotation.
Prior to Fourier transformation, the free induction decays (FIDs) were
zero-filled to 64K and a 0.3 Hz line-broadening factor was applied. The
chemical shifts are expressed in δ scale (ppm), referenced to the residual
signal of chloroform (7.26 ppm) (25). The spectra were phase- and
baseline-corrected manually. The multivariate data analysis was per-
formed on a region of the NMR spectra between 0 and 7 ppm. The
spectra were binned with 0.02 ppm wide buckets and normalized to total
intensity over the region 4.10-4.26 ppm (glycerol signal). TopSpin 1.3
(2005) and Amix-Viewer 3.7.7 (2006) from Bruker BioSpin GMBH
(Rheinstetten, Germany) were used to perform the processing of the
spectra. The data table generated with the spectra of all samples was then
used for pattern recognition. Eight buckets in the region 4.10-4.26 ppm
(reference region) were excluded in the multivariate data analysis.

IRMS Analysis. Isotopic measurements of δ13C were performed by
continuous flow IRMS using a Carlo Erba elemental analyzer (EA) EA-
1108-CHN (Thermo Fisher, Milan, Italy) coupled to a DeltaPlus mass
spectrometer (Thermo Fisher, Rodano, Italy). The δ13C signal for the
reference peak was 4000 mV; the oxidation column temperature, 1050 �C;
the reduction column temperature, 650 �C; and the GC column tempera-
ture, 65 �C. δ2Hmeasurements were carried out by continuous flow IRMS
using a total conversion elemental analyzer (TC/EA) coupled to a Delta
PlusXP mass spectrometer (ThermoFisher, Rodano, Italy). The δ2H
signal for the reference peak was 7000 mV; the GC column temperature,
80 �C; and the glassy-carbon column reactor temperature, 1450 �C.

The results of the carbon (δ13C) and hydrogen (δ2H) isotope ratio
analyses are reported per mil (%) on the relative δ scale and refer to the
international standardsV-PDB (ViennaPeeDeeBelemnite) for the carbon
isotope ratio andV-SMOW(Vienna StandardMeanOceanWater) for the
hydrogen isotope ratio. All results were calculated according to the
equation

δ ð%Þ ¼ ½ðRsample=RreferenceÞ- 1��1000

where R is the ratio of the heavy to light stable isotope (e.g., 2H/1H) in the
sample (Rsample) and in the standard (Rreference). The calibration of the
control gases (CO2 and H2) was performed using the following reference
materials: (i) for δ13C measurements, IAEA-CH7-Polyethylene (δ13C =
-32.15%) and IAEACH6-Sucrose (δ13C = -10.4%) for CO2 gas
cylinder calibration; and (ii) for δ2H measurements, IAEA-CH7-
Polyethylene (δ2H = -100.3%) and V-SMOW (δ2H = 0%) for H2 gas
cylinder calibration. An olive oil sample was calibrated with the interna-
tional reference materials previously mentioned and used as a working
standard. The standard was analyzed at regular intervals to control the
acceptable repeatabilities of the measurements and to correct for possible
drifts in the measurements. The standard deviations (n= 10) determined
using the corresponding reference gas were 0.05% for δ13C, and 0.8% for
δ2H. Each olive oil sample was analyzed in triplicate, the standard
deviations being <0.15% for δ13C and <2.7% for δ2H.

Data Analysis. The data set, made up of the values of the 342 buckets
of the 1HNMR spectra (variables in columns) measured on the 963 VOOs
analyzed (samples in rows), was first analyzed by univariate procedures
(ANOVA, Fisher index, and box-whisker plots) and, afterward, by
the following multivariate techniques, already described in the Literature
Cited (26): unsupervised ones as principal component analysis (PCA) and
supervised ones as linear discriminant analysis (LDA) and partial least-
squares discriminant analysis (PLS-DA). Statistical and chemometric data
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analyses were performed by means of the statistical software packages
Statistica 6.1 (StatSoft Inc., Tulsa, OK, 1984-2004), TheUnscrambler 9.1
(Camo Process AS, Oslo, Norway, 1986-2004), and SIMCA-P 11.0
(Umetrics AB, Umea, Sweden, 1992-2005).

In LDA, the variable selection strategy was the following. First, a
modified best subset selection was used, which is a variable selection
procedure that performs a search for the best subsets of a small number of
variables that fulfill the criterion for choosing the best one (Wilks’ lambda,
rate ofmisclassification, etc.). This can be computed relatively quickly and
in several steps: first, best subset selection is applied to the complete data
matrix to obtain the first best (small) subset of variables; then, in a second
step, best subset selection is sued on a data set omitting the variables
selected in the first step, a second best subset is achieved, and so on.
Finally, a refined selection of the variables selected successively in the
previous steps was performed using forward stepwise selection (26).

In PLS-DA, PRESS or RMSEP are plotted against the number of the
principal components to find the optimal number of PLS components.
Sometimes there are several almost equivalent local minima on the curve;
the first one should be preferred to avoid overfitting (according to the
principle of parsimony). The model with the smallest number of features
should be accepted from among equivalent models on the training set.
Once PLS components are estimated by cross-validation, the classifica-
tions in the training-test set are represented in a box-whisker plot to define
half of the distance between the quartiles as the boundary.

The supervised techniques were applied to the autoscaled (or
standardized) or Pareto-scaled data matrix of the VOO profiles following
these steps: (i) the data set was divided into a training-test set and an
external data set; (ii) the training-test set was subsequently divided into a
training set and a test set several times to perform cross-validation; (iii) the
training-test set was used for the optimization of parameters characteristic
of each multivariate technique by cross-validation, for instance, the
number of PLS components in PLS-DA or for variable selection in
LDA; (iv) a final mathematical model was built using all of the samples
of the training-test set and the optimized parameters; (v) this model was
validated using an independent test set of samples (external data set), that
is, performing an external validation. During the parameter optimization
step, the models were validated by three-fold cross-validation (3-fold CV)
or leave-one-out cross-validation (LOO). The reliability of the classifica-
tion models achieved in the cross-validation was studied in terms of
recognition ability (percentage of the samples in the training set correctly
classified during the modeling step) and prediction ability (percentage of
the samples in the test set correctly classified byusing themodels developed
in the training step). The reliability of the final model was evaluated in
terms of classification ability (percentage of the samples of the training-test
set correctly classified by using the optimized model) and the prediction
ability in the external validation (percentage of the samples of the external
set correctly classified by using the optimized model) (26).

RESULTS AND DISCUSSION

1H NMR Spectra of VOOs. 1HNMR spectra of the 941 VOOs
produced in different PDOareas and/or regions fromEUolive oil
producing countries, namely, Italy, Spain, Greece, and France,
and 22VOOs fromother countries from theMediterranean basin
(Turkey, Cyprus, and Syria) were recorded. Olive oil is mainly
made up of triglycerides, differing in their substitution patterns in
terms of length, degree, and kind of unsaturation of the acyl
groups, and by minor components such as mono- and diglycer-
ides, sterols, tocopherols, aliphatic alcohols, hydrocarbons, fatty
acids, pigments, and phenolic compounds (1). The chemical shifts
of the 1H signals of the triglycerides are well-known (4).Minor oil
components are only observed by 1HNMRwhen their signals do
not overlap with those of the main components and their
concentrations are high enough to be detected (21, 27-30). A
typical 1H NMR spectrum of a VOO and the common 1H NMR
signals of the major and some minor compounds together with
their chemical shifts and their assignments to protons of the
different functional groups are published elsewhere (21, 27-30).

Influence of the Harvest on 1H NMR Fingerprint of VOOs. The
data set consisted of a 963 � 342 matrix, in which rows

represented the 963 samples ofVOOand columns the 342 buckets
of the 1HNMR spectrum. The presence of outliers in the data set
was analyzed by PCA, and 28 extreme samples from different
origins and harvests were removed after the presence of some
irregularities in their NMR spectra was noted. The four first
principal components (accounting for 63% of total system
variability: PC1 for 31%, PC2 for 13%, PC3 for 11%, and PC4
for 7%) showed that samples were distributed in a compact
cluster, even though some subgroupings according to harvest year
were observed. PC2, PC3, andPC4 contained information related
to the year; however, Figure 1 shows that the three clusters
partially overlapped. Because 70% of the samples were Italian
and the rest from countries in theMediterranean region, seasonal
aspects seem to affect all samples in the same way, independently
of their geographical origin. Therefore, in the modeling for the
authentication of agricultural food products, it is important to
have chemical data of several harvests to obtain general classifi-
cationmodels that include the seasonal variability, as well. On the
other hand, the PCA score plots did not show any clusters related
to the geographical origin or the PDO of the oils. This indicates
that the direction of maximum variability in the data set did not
correspond to the direction of maximum discrimination among
the geographical origins or PDOs. This suggests the presence of
other sources of variability. Indeed, the year of harvest was
confirmed to be one of them as seen above.

Geographical Characterization of Olive Oil. The large data set
of VOOs was studied regarding the situations that the antifraud
authorities and regulatory bodies face. The PDO Riviera Ligure,
some Italian regions, and the main countries that produce VOOs
were used as examples to prove the potential of the tools to detect
themislabeling of non-PDOoils as PDOVOOsor themislabeling
of the provenance of VOOs at the regional or national level.With
this purpose, several multivariate data analysis techniques, data
sets, types of data scaling, and cross-validation were used. The
best classification models were determined for each case study.
PDOOlive Oils of Riviera Ligure.Under the PDOofRiviera

Ligure, extra virgin olive oils produced in Liguria (Italy) that
fulfill the PDO requirements related to olive varieties, farming
practices, oil extraction procedures, bottling, and labeling
(Dossier Number: IT/PDO/0017/1540, Off. J. Eur. Communities
1997,L22) can bemarketed. The 1HNMRdata set ofVOOs from

Figure 1. PCA score plot of the VOO samples on the space defined by
PC2, PC3, and PC4.
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different geographical origins and PDOswas used to differentiate
between VOOs belonging to the PDO Riviera Ligure and those
not belonging to this PDO.EachVOOwas represented in the 342-
dimensional space by a data vector made of the 342 NMR
variables. Univariate techniques (ANOVA, Fisher index, and
box-whisker plots) cannot select a single variable to distinguish
between Ligurian (belonging to the PDO Riviera Ligure) and
non-Ligurian (not belonging to the PDO) samples. Therefore, it
was necessary to apply supervised pattern recognitionmethods to
build classification models that can distinguish VOOs of this
PDO from the rest. Several multivariate approaches (LDA and
PLS-DA) were tested using balanced or unbalanced data sets,
different cross-validation methods (LOO and 3-fold CV), and
different data scalings (autoscaling andPareto-scaling) to find the
best approach for the authenticity and traceability of PDO olive
oils. Tables 1 and 2 summarize the classification results.

LDA models obtained using an unbalanced training-test set
were biased to the class with more representatives, that is,
the non-Liguria class, presenting 93% of hits, whereas for the

Liguria oils, the recognition and prediction abilities were <57%
(Table 1). LDAwas very sensitive to imbalances in the number of
samples of each category in the data set, as expected from the
literature (26). In contrast, PLS-DA was not so sensitive to
imbalances in the data set and performed better than LDA.
The PLS-DA model, using the autoscaled data set, presented
recognition and prediction abilities in the cross-validation of 88
and 80%, respectively, for the VOOs from Liguria, and 83 and
84%, respectively, for the non-Liguria VOOs. The percentage of
classification of the final model (three PLS components and the
boundary at 0.318) and the prediction in the external validation
were close to each other, 87 and 85% for Liguria VOOs and
84 and 83% for non-Liguria VOOs, respectively, as well as to the
recognition and prediction abilities in the training step. This
would be considered indicative of a satisfactory model. However,
the fact that the prediction ability was slightly higher than the
recognition ability for the non-Liguria class indicated that the
model did not performproperly for this class,whichwasprobably
due to the imbalances in the data set. Indeed, the percentage of

Table 1. Classification Results Obtained by Supervised Pattern Recognition Techniques for the Authentication of VOO of the PDO Riviera Ligure Using 1H NMR
Spectral Data (Unbalanced Data Set) and δ13C and δ2H Dataa

cross-validation model external validation

% recognition % prediction % classification % prediction

N: 126 466 126 466 73 270

prior prob: 0.21 0.79 0.21 0.79

technique miscellaneous validation Liguria

non-

Liguria Liguria

non-

Liguria Liguria

non-

Liguria Liguria

non-

Liguria

LDAb 5 NMR buckets selected: 6.61, 5.09, 4.57, 4.05, and 0.33 ppm;

autoscaling

3-fold CV 56.7 93.5 54.0 93.3 56.3 93.6 45.2 92.6

LDAb 5 NMR buckets selected: 6.61, 5.09, 4.57, 4.05, and 0.33 ppm;

autoscaling IRMS: δ13C and δ2H
3-fold CV 56.7 93.5 54.0 93.3 57.9 94.4 45.2 92.6

PLS-DAb 3 PLS components selected boundary: 0.3180; autoscaling 3-fold CV 87.7 83.4 80.2 84.3 86.5 83.9 84.9 83.3

PLS-DAc 3 PLS components selected boundary: 0.3180; autoscaling 3-fold CV 81.7 84.1 86.5 83.7 84.9 83.3

PLS-DAc 3 PLS components selected boundary: 0.3180; autoscaling LOO 81.7 83.0 86.5 83.7 84.9 83.3

PLS-DAd 3 PLS components selected boundary: 0.3180; autoscaling 3-fold CV/LOO 86.5 83.9 84.9 83.3

PLS-DAd 3 PLS components selected boundary: 0.3175; Pareto scaling 3-fold CV/LOO 84.1 81.1 74.0 77.8

aAbbreviations:N, number of samples; prior prob, prior probability; LDA, linear discriminant analysis; PLS-DA, partial least-squares discriminant analysis. class codes: Liguria,
1; non-Liguria, 0. bStatistica. c The Unscrambler. d SIMCA-P.

Table 2. Classification Results Obtained by Supervised Pattern Recognition Techniques for the Authentication of VOO of the PDO Riviera Ligure Using 1H NMR
Spectral Data (Balanced Data Set) and δ13C and δ2H Dataa

cross-validation model external validation

% recognition % prediction % classification % prediction

N: 132 135 132 135 67 601

prior prob: 0.49 0.51 0.49 0.51

technique miscellaneous validation Liguria

non-

Liguria Liguria

non-

Liguria Liguria

non-

Liguria Liguria

non-

Liguria

LDAb 5 NMR buckets selected: 6.61, 5.11, 4.57, 4.05, and 0.33 ppm;

autoscaling

3-fold CV 84.1 85.9 84.1 83.7 82.6 85.2 86.6 79.7

LDAb 4 NMR buckets selected: 5.11, 4.57, 4.05, and 0.33 ppm

IRMS: δ13C and δ2H
3-fold CV 88.3 84.1 85.6 80.7 87.9 83.0 89.6 79.7

PLS-DAb 5 PLS components selected boundary: 0.540; autoscaling 3-fold CV 91.3 92.6 87.9 86.7 91.7 90.4 88.1 85.5

PLS-DAc 5 PLS components selected boundary: 0.540; autoscaling 3-fold CV 86.4 85.9 91.7 90.4 88.1 85.5

PLS-DAc 5 PLS components selected IRMS: δ13C and δ2H boundary: 0.547;

autoscaling

3-fold CV 86.4 85.2 91.7 91.9 86.6 86.0

PLS-DAc 5 PLS components selected boundary: 0.540; autoscaling LOO 87.1 85.9 91.7 90.4 88.1 85.5

PLS-DAc 5 PLS components selected IRMS: δ13C and δ2H boundary: 0.547;

autoscaling

LOO 85.6 85.2 91.7 91.9 86.6 86.0

PLS-DAd 5 PLS components selected boundary: 0.540; autoscaling 3-fold CV/LOO 91.7 90.4 88.1 85.5

PLS-DAd 4 PLS components selected boundary: 0.520; Pareto scaling 3-fold CV/LOO 87.1 83.0 80.6 81.0

aSee abbreviations for Table 1. bStatistica. c The Unscrambler. d SIMCA-P.
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correct classifications for the non-Liguria category was slightly
higher than its a priori probability (79%). The cross-validation
used in the training step did not influence the prediction abili-
ties for either category, indicating that the samples were well-
represented in the training set. PLS-DA using the autoscaled
unbalanced data set attained the same best finalmodel, consisting
of three PLS components and the boundary at 0.318 (class codes:
Liguria, 1; non-Liguria, 0). PLS-DAapplied on the Pareto-scaled
unbalanced data set provided amodel with four PLS components
and the boundary at 0.325, which performed worse.

Both supervised pattern recognition techniques, LDA and
PLS-DA, performed better if a balanced training-test set was
used. However, PLS-DA still outperformedLDA.LDAachieved
classifications of around 85% of hits for both categories. PLS-
DA provided a model with five PLS components and the
boundary at 0.540, which achieved slightly better results for the
Liguria class (prediction ability in the cross-validation, 86-88%;
classification ability of the final model, 92%; and prediction
ability of the finalmodel in the external validation, 88%) than for
the non-Liguria VOOs (86-87, 90, and 86%, respectively). These
results together with the facts that in the cross-validation the
recognition ability was higher but close to the prediction ability
and the classification ability of the finalmodel was also higher but
close to prediction ability in the external validation disclosed that
the model achieved was feasible and not random, as well as well-
represented by the samples in the data set. PLS-DAon the Pareto-
scaling balanced data set produced a model with four PLS
components and the boundary at 0.520. This model also gave
better classifications (classification ability of the final model, 87
and 83% for the Liguria and non-Liguria, respectively; and
prediction ability of the final model in the external validation,
81% for both classes) than the model made with the unbalanced
data set. With both data sets (balanced and unbalanced), Pareto-
scaling led to worse outcomes than autoscaling.

The variable selection used for LDA afforded five NMR
buckets centered at the following chemical shifts: 6.61, 5.11 or
5.09, 4.57, 4.05, and 0.33 ppm. These buckets correspond to
signals of the following VOO components: phenolic compounds
and unsaturated alcohols, which present characteristic reso-
nances in the spectral region 6-7.5 ppm (31) and 4.5-5 ppm,
respectively; sn-1,2-diglycerides (5.09-5.11 ppm) and sn-1,3-
diglycerides (4.05 ppm), due to their CH glycerol protons; and
cycloartenol (0.33 ppm), to the methylene proton of its cyclopro-
panoic ring (30).

The weighted regression coefficients (32) of the PLS models
indicate the importance of the NMR variables on the model: the
larger the regression coefficient, the higher the influence of the
variable on the PLS model. The variables selected in LDA were
among the variables that presented the highest weighted regres-
sion coefficients in the PLS-DA models: 6.85-6.83, 6.75, 6.67,
6.59, and 6.23 ppm belonged to signals of phenolic compounds;
5.15-5.07 ppm was due to the CH glycerol protons of sn-1,2-
diglycerides; 4.99 ppm was due to unsaturated alcohols; 4.71,
4.65, and 4.57 ppm were due to terpenes; 2.79 ppm was due to
diallylic proton of linolenic acyl group; 1.29 ppm was due to
methylene proton of linoleic and linolenic acyl group; and 0.33
ppmwas due to cycloartenol. Therefore, both pattern recognition
techniques arrived at consistent results, each one providing
information about the most important features for the character-
ization of PDO Riviera Ligure VOOs.

With the additional information provided by the δ2H and δ13C
isotopesmeasured by IRMS, the classification results of the LDA
model using the unbalanced data set were similar, even though
both isotopes were significant variables (at the 5% level) together
with the fiveNMRbuckets previously selected (Table 1). Thiswas

probably due to the imbalances in the data set. However, with the
balanced data set, LDA provided a model with four significant
NMR variables previously selected and the two isotopes (both
significant) that obtained (Table 2): (i) slightly better classifica-
tions for the Liguria class than the model made only with NMR
data; (ii) whereas the classification results for the non-Liguria
class were slightly worse. This fact suggested that δ2H and δ13C
isotopes contained some information related to VOOs from
Liguria. As a matter of fact, Angerosa et al. (23) and, more
recently, Camin et al. (33) observed that the values of δ13C and
δ2H in olive oils increased according to the olive cultivation
latitude, from northern to southern Italy. Thus, olive oils pro-
duced in northern, central, and southern Italy could be well
differentiated by these isotopes. However, the discrimination of
olive oils produced in different regions at similar latitudes is
more difficult. Olive oils from Liguria (in northwestern Italy)
present a different chemical composition and particular organo-
leptic characteristics, in comparison with other northern Italian
olive oils such as those from the region of Garda lake. This is
due to the proximity of Liguria to the sea and the special climate
of the region. PLS-DA was also applied on an autoscaled
balanceddata set that contained 344 variables (342NMRbuckets
and the 2 isotopes); however, no improvement was observed in
the classification results of the models achieved (neither LOO nor
3-fold CV).

The best model for the distinction between VOOs belonging to
the PDO Riviera Ligure and other VOOs was afforded by PLS-
DA using an autoscaled balanced training-test set.

Virgin Olive Oils from Other Regions. The large data set
available (963 � 342 matrix) was used to authenticate VOOs
produced in selected Italian regions. The regions selected were
those best represented in the data set. Models were generated for
the following Italian regions: Umbria (which is also a registered
PDO, PDO Umbria, Dossier IT/PDO/0017/1520, Off. J. Eur.
Communities 1997, L322); Sicily (six PDOs: Monte Etna, Val di
Mazara, Valli Trapanesi, Valle del Belice, Valdemone, andMonti
Iblei); Puglia (four PDOs: Terra d’Otranto, Collina di Brindisi,
Dauno, and Terra di Bari); Lazio (three PDOs: Tuscia, Canino,
and Sabina); Garda (three PDOs: Garda, Laghi Lombardi, and
Veneto Valpolicella, Veneto Euganei e Berici, Veneto del Grappa);
Campania (3 PDOs: Peninsola Sorrentina, Colline Salernitane,
andCilento); andCalabria (three PDOs:Lametia,AltoCrotonese,
and Bruzio).

Taking into account the results obtained by the different
approaches studied for the PDO Riviera Ligure and that the
number of samples for each of these regions was considerably
smaller than in the Liguria category, the models for these regions
were developed using an autoscaled balanced training-test set by
PLS-DA and LOO CV. The final models were also evaluated by
external validation. The results are summarized in Table 3. The
model obtained to authenticate VOOs from Sicily recognized
98% of the Sicilian oils and 89% of the non-Sicilian ones and
managed to correctly predict in the cross-validation step 93 and
86% of Sicilian and non-Sicilian oils, respectively. Because this
model achieved predictions in the external validation (>85% of
hits for both categories) similar to those in the modeling step, it
can be considered stable and robust. In contrast, the models
created for other regions such asLazio,Garda, andCalabriawere
not so satisfactory: although the classification abilities were close
to 90%of correct hits or even higher, the prediction abilities in the
cross-validationwere from10 to 24% lower,whichmeant that the
classification results were very dependent on the samples included
in the training set in the modeling step. This also occurred for
Umbria and Campania, but the models achieved about 80% of
correct classification for the training set, and predictions on the
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test setweremore than 10% lower, except for the oils belonging to
the non-Umbria category (5% less). The external validation of
somemodels (only 50% ofUmbria, 57% of Campania, and 60%
of Calabria VOOs were correctly predicted) confirmed that the
classes were not well represented in the modeling step. Puglian
VOOs, as well as non-Garda VOOs, were much better predicted
in the external data set (82% of hits) than in the cross-validation
(68 and 72% of hits, respectively). This was probably due to the
way samples were divided into the training-test set and the
external set: the PCA scores of all the VOOs were regarded to
select samples from the whole cloud of points including the
borders. This procedure ensured that the training-test set was
representative of all the samples (at least of the three harvests
studied); however, the predictions on the external set could be
overly optimistic.

The most influential variables, that is, those with the highest
weighted regression coefficients, on the binary PLS-DA models
achieved for each region are listed in Table 4. The signals due to
cycloartenol (0.31-0.33 ppm) and sn-1,2-diglycerides (5.07-
5.15-ppm) were important for all models except for Garda, as
well as the resonances in the phenolic region at 6.73-6.79 ppm,
which only did not influence the model for Sicily. The acyl group
methylene protons of saturated fatty acids (1.23 ppm), 13C
satellite of signal at 4.09-4.32 ppm (R-methylene protons of
the glyceryl group of triglycerides) at 3.97 ppm, and the signal at
5.57 ppm were important specifically for the Umbria model; the
signals at 0.53 and 0.79 ppm, for the Sicily model; the methylic
protonof theC18-steroid group ofβ-sitosterol (0.67 ppm) and the
terpene signal at 4.57-4.59 ppm, for the Puglia model; the signal
of the cycloartenol at 0.55ppm, 13C satellite of signal at 2.26-2.32
ppm (R-methylene protons of the acyl group) at 2.15 ppm, the
glycerol proton of sn-1,2-diglycerides (3.71 ppm), and signals at
6.19 ppm and 6.15 ppm in the phenolic region, for the Lazio
model; signals in the regions 1.35-1.43, 2.35-2.39, and
4.33-4.35 ppm, the R-methylene protons of the acyl group
(2.29 and 2.33 ppm), the signal at 3.75 ppm, the R-methylene

protons of the glyceryl group of triglycerides (4.27 ppm), and the
signal at 6.15 ppm in the phenolic region for theCampaniamodel;
and the signal at 5.93 ppm for the Calabria model. The glyceryl
protons of sn-1,3-diglycerides (4.05-4.07 ppm) and triglycerides
(5.25 and 5.29 ppm) were influential for the models of Umbria,
Lazio, Umbria, and Campania, respectively; signals in the phe-
nolic region at 6.25-6.29 ppm for the models of Puglia and
Calabria; signals in the phenolic region at 6.63-6.65 and
6.69-6.71 ppm for the models of Umbria and Campania; and
signals in the phenolic region at 6.45-6.47 ppm for the models of
Umbria and Garda.

These results disclosed that 1H NMR spectra of VOOs con-
tained information related to the region of provenance of the oil,
but further studies should be carried out with a considerably
larger sample set for each region, and even for eachof their PDOs,
to guarantee the detection of fraudwhenVOO is falsely labeled as
belonging to a certain origin. In this regard, Sicily, which is an
island at the southernmost point of Italy, produces an olive oil
that is markedly influenced by pedoclimatic factors, in accor-
dance with its geographical position. It is therefore coherent that
the VOO produced on this island presents a characteristic
chemical composition that allows one to distinguish it from all
other VOOs from different geographical regions. In contrast, the
stable isotopesmeasuredon the samples,δ2H andδ13C,which are
commonly related to pedoclimatic features, did not improve the
classification of the Sicilian and non-Sicilian VOOs, even if δ13C
was a significant variable in the model. Similarly, these stable
isotopes did not enhance the classification results for the Umbria,
Campania, and Calabria models. In the Umbria model, both
isotopes were among the variables with the highest weighted
regression coefficients, whereas they were not in the Campania
and Calabria models. However, both stable isotopes provided
extra useful information related to the non-Puglia category in the
Puglia model, as well as for the Garda class in the Garda model.
δ13C data substantially improved the classification for both
classes of the Lazio model. Therefore, depending on the case

Table 3. Classification Results Obtained by Supervised Pattern Recognition Techniques for the Authentication of VOO from Certain Italian Regions Using 1H NMR
Spectral Data and δ13C and δ2H Dataa

cross-validation model external validation

% prediction % classification % prediction

model origin N

prior

prob NMR

NMRþ
IRMS N

prior

prob NMR

NMRþ
IRMS N

prior

prob NMR

NMRþ
IRMS

Umbria vs non-Umbria Umbria 35 0.45 71.4 71.4 35 0.45 82.9 82.9 12 0.014 50.0 50.0

(a) NMR: 2 PLS components, boundary: 0.525 non-Umbria 43 0.55 74.4 72.1 43 0.55 79.1 79.1 845 0.986 74.8 76.7

(b) NMR þ IRMS: 2 PLS components, boundary: 0.5325

Sicily vs non-Sicily Sicily 54 0.47 92.6 92.6 54 0.47 98.1 98.1 24 0.029 87.5 91.7

(a) 3 PLS components, boundary: 0.460 non-Sicily 62 0.53 85.5 85.5 62 0.53 88.7 87.1 795 0.971 85.8 84.9

(b) NMR þ IRMS: 3 PLS components, boundary: 0.452

Puglia vs non-Puglia Puglia 47 0.42 68.1 63.8 47 0.42 72.3 72.3 22 0.027 81.8 81.8

(a) 2 PLS components, boundary: 0.4435 non-Puglia 64 0.58 62.5 70.3 64 0.58 71.9 71.9 802 0.973 65.1 67.1

(b) NMR þ IRMS: 2 PLS components, boundary: 0.451

Lazio vs non-Lazio Lazio 40 0.49 80.0 85.0 40 0.49 97.5 97.5 19 0.022 73.7 84.2

(a) 4 PLS components, boundary: 0.515 non-Lazio 41 0.51 68.3 75.6 41 0.51 90.2 90.2 835 0.978 69.3 70.5

(b) NMR þ IRMS: 4 PLS components, boundary: 0.533

Garda vs non-Garda Garda 36 0.46 72.2 77.8 36 0.46 91.7 88.9 13 0.015 69.2 76.9

(a) 3 PLS components, boundary: 0.555 non-Garda 43 0.54 74.4 74.4 43 0.54 90.7 90.7 843 0.985 80.1 81.9

(b) NMR þ IRMS: 3 PLS components, boundary: 0.538

Campania vs non-Campania Campania 21 0.43 71.4 71.4 21 0.43 81.0 81.0 7 0.008 57.1 57.1

(a) 2 PLS components, boundary: 0.430 non-Campania 28 0.57 64.3 64.3 28 0.57 78.6 78.6 879 0.992 62.9 63.0

(b) NMR þ IRMS: 2 PLS components, boundary: 0.4315

Calabria vs non-Calabria Calabria 17 0.38 70.6 70.6 17 0.38 94.1 94.1 5 0.006 60.0 60.0

(a) 3 PLS components, boundary: 0.445 non-Calabria 28 0.62 85.7 85.7 28 0.62 96.4 96.4 885 0.994 79.9 80.3

(b) NMR þ IRMS: 3 PLS components, boundary: 0.447

aSee abbreviations for Table 1. Models obtained by PLS-DA using autoscaling, LOO, and The Unscrambler. Class codes: region, 1; non-region, 0.
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study, stable isotopes can provide useful and complementary
information to that contained in the 1H NMR fingerprint of the
VOOs related to their geographical origin. Camin et al. (33) found
that olive oils produced in the southern regions of Italy had similar
isotopic signatures, making a clear discrimination among them
difficult. The improvement observed on the Garda model can be
attributed to the fact that these isotopes contain information
referring to the latitude of this region, that is, the northern part of
Italy, and its special environmental conditions, that is, low mean
temperatures and rainy weather. Thus, Garda olive oils present
lower δ13C and δ2H than olive oils produced in the rest of Italy.
Main Producers of Olive Oil: Spain, Italy, and Greece.With

regard to the adulteration of VOOs from a certain country
with VOOs produced in another country at a lower cost, or the
false labeling of the VOOs as coming froma certain country when
they were actually produced in another, the need for chemical
approaches to detect these fraudulent activities is evermore
apparent.

The 1H NMR data of the VOOs from the main olive oil
producing countries, that is, Spain, Italy, and Greece, were
analyzed by multivariate techniques with the purpose of creating
classificationmodels that would allow the distinction between the
geographical origins of VOOs from these three countries. Table 5
shows the results. The model distinguishes VOOs from Greece
from all the rest of the VOOs; it classified properly >97% of the
samples of both categories, Greece and non-Greece, and pre-
dicted correctly >90% of the samples in the test set of the cross-
validation, aswell as in the external validation. The binarymodels
for Italy andSpain presented classification abilities of 89% for the
Italian oils and the Spanish oils, 84% for the non-Italy category,
and 85% for the non-Spain category. The prediction abilities in
the cross-validation for the model for Spain were ca. 80% of hits
for both classes, whereas the predictions in the external validation
were considerably different; for the Spanish VOOs it was overly
optimistic (92%), and for the non-Spanish VOOs it was con-
siderably low (67%). In the model for Spain, the variability of the
non-Spain category was under-represented in the training-test
sets. Therefore, this model did not provide good predictions for
this category in the external set. The model for Italy provided
prediction abilities in the cross-validation of ca. 76% for both

classes and in external validation, close to this value. These
predictions were substantially lower than the recognition ability
of the model, indicating that the model was dependent on the
samples included in the training set.

Table 6 gathers themost influential variables, that is, thosewith
the highest weighted regression coefficients, on the binary PLS-
DAmodels obtained for each country, identifying the functional
groups and compounds to which the signals are due. The signals
in the phenolic regions at 6.45-6.47 and 6.83-6.85 ppm were
important for the three models. In contrast, the model for Spain
was particularly influenced by the methylic proton of the C18-
steroid group of β-sitosterol (0.67 ppm), the β-methylene protons
of the acyl group (1.59 and 1.67 ppm), the allylic protons of the
acyl group (1.99-2.07 ppm), the diallylic protons of the acyl
group of linoleic (2.73-2.77 ppm) and linolenic (2.77-2.81 ppm),
the glycerol proton of sn-1,2-diglycerides (3.71 ppm), sn-1,3-
diglycerides (4.05-4.07 ppm), and triglycerides (5.25 and 5.29
ppm), the olefinic protons of the acyl groups (5.37 ppm), the
signals in the phenolic region at 6.37, 6.61, and 6.71 ppm, and the
signals at 0.53, 1.75-1.77, and 2.35 ppm. Among the most
important variables, those that affectedonly themodel forGreece
were the methylic proton of the linolenic acyl group (0.97 ppm),
the terpene signal at 4.55-4.57 ppm, and the signals at 0.77
and 3.81 ppm. The resonances of cycloartenol (0.31-0.33 and
0.55 ppm) and phenolic compounds at 6.23 and 6.27 ppm were
important for the models of Italy and Greece.

A ternary model was developed to classify VOOs from three
countries: Italy, Spain, and Greece. It did not classify as well as
the binary models created for each country (Table 5). Indeed,
PLS-DA is known to perform better with a smaller number of
classes (26). Thus, the model recognized 94% of Greek, 81% of
Italian, and 75% of Spanish oils in the training-test sets and
predicted correctly 88% of Greek oils and 69% of the samples
from Italy and Spain in the cross-validation and 81% of Greek,
79%ofSpanish, and 66%of Italian oils in the external validation.

In conclusion, these results show that 1H NMR fingerprin-
ting of VOOs can be a useful tool to ensure authenticity and
traceability of VOOs at the national level. From this study,
a stable model was achieved to distinguish Greek VOOs from
oils from other countries. However, for Italian and Spanish

Table 5. Classification Results Obtained by Supervised Pattern Recognition Techniques for the Authentication of VOO from the Main Producing Countries, Italy,
Spain, and Greece, Using 1H NMR Spectral Data and δ13C and δ2H Dataa

cross-validation model external validationb

% prediction % classification % prediction

model origin N

prior

prob NMR

NMRþ
IRMS N

prior

prob NMR

NMRþ
IRMS N

prior

prob NMR

NMRþ
IRMS

Italy vs non-Italy Italy 72 0.35 75.0 79.2 72 0.35 88.9 90.3 568 0.78 75.7 80.1

(a) NMR: 4 PLS components, boundary: 0.4020 non-Italy 135 0.65 77.0 85.2 135 0.65 84.4 90.4 160 0.22 71.9 73.1

(b) NMR þ IRMS: 4 PLS components, boundary: 0.4225

Spain vs non-Spain Spain 71 0.34 78.9 77.5 71 0.34 88.7 87.3 70 0.10 92.9 90.0

(a) NMR: 3 PLS components, boundary: 0.3563 non-Spain 136 0.66 80.9 83.8 136 0.66 85.3 88.2 658 0.90 67.2 71.7

(b) NMR þ IRMS: 3 PLS components, boundary: 0.3677

Greece vs non-Greece Greece 64 0.31 92.2 96.9 64 0.31 98.4 98.4 31 0.04 96.8 96.8

(a) NMR: 5 PLS components, boundary: 0.4725 non-Greece 143 0.69 93.7 91.6 143 0.69 97.9 96.5 697 0.96 90.0 91.1

(b) NMR þ IRMS: 5 PLS components, boundary: 0.4582

Italy vs Spain vs Greece

(a) NMR: 5 PLS components, boundary: 0.4120 Italy 72 0.35 69.4 79.2 72 0.35 80.6 83.3 568 0.85 65.5 73.8

(b) NMR þ IRMS: 5 PLS components, boundary: 0.4500

(a) NMR: 5 PLS components, boundary: 0.3570 Spain 71 0.34 69.0 67.6 71 0.34 74.6 77.5 70 0.10 78.6 78.6

(b) NMR þ IRMS: 5 PLS components, boundary: 0.3616

(a) NMR: 5 PLS components, boundary: 0.4395 Greece 64 0.31 87.5 90.6 64 0.31 93.8 100.0 31 0.05 80.6 83.9

(b) NMR þ IRMS: 5 PLS components, boundary: 0.4350

aSee abbreviations for Table 1. Models obtained by PLS-DA using autoscaling, LOO, and The Unscrambler. Class codes: “country”, 1; “non-country, 0. b The external data set
used to evaluate the three-class model consisted of samples from Italy, Spain, and Greece.
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VOOs further studies should be performed with a larger balanced
data set, in which all categories will be well represented, to obtain
robust models. In the present data set, Spain was clearly under-
represented, being the main producer (50% of EU production of
olive oil); for Italy, even though it was quite well-represented, the
numbers of samples were very unbalanced with regard to the
other countries and, therefore, few Italian samples were used in
the modeling step, so the classification results might be very
dependent on the samples in the training-test set.

Stable isotopes considerably enhanced the classification results
of VOOs according to their country of origin;, δ2H and δ13C
being among the highest weighted regression coefficients of the
PLS-DA models. The results for the model for Italy provided
better discrimination for both categories, whereas those of the
model for Spain provided better classifications for the non-
Spanish category. Higher prediction abilities for the Greek
category were obtained in the cross-validation; however, the
percentage of classification of the final model and the predictions
on the external data set did not improve the classification notably.
In contrast, the additional informationprovidedby these isotopes

enhances substantially the classification results for the Greek and
Italian categories of the ternary model afforded for the three
countries. Indeed, δ13C of olive oils already showed potential for
the discrimination between olive oils from Greece, Spain, and
Italy (23, 24), because the mean value of δ13C increases in the
order Italian < Greek < Spanish oils.

ABBREVIATIONS USED

VOO, virgin and extra virgin olive oils; PDO, Protected
Designation of Origin; PGI, Protected Geographical Indication;
TSG,Traditional SpecialtyGuaranteed;NMR, nuclearmagnetic
resonance; FID, free induction decays; NIR, near-infrared;MIR,
middle-infrared; IR, infrared; FT, Fourier transformation; GC,
gas chromatography; LC, liquid chromatography; SPE, solid-
phase extraction; ANOVA, analysis of variance; PCA, principal
component analysis; PC, principal component; LDA, linear
discriminant analysis; PLS-DA, partial least-squares discrimi-
nant analysis; PRESS, predicted error sum of squares; RMSEP,
root-mean-square error of prediction; CV, cross-validation;
LOO, leave-one-out cross-validation.

Table 6. Most Important Variables in the Binary PLS-DA Models Achieved for the Geographical Classification of VOOs at the National Level by 1H NMR

Italy Spain Greece functional group attribution

0.33-0.31 0.33-0.31 -CH2- (cyclopropanic ring) cycloartenol

0.53

0.55 0.55 -CH2- (cyclopropanic ring) cycloartenol

0.67 -CH3 (C18-steroid group) β-sitosterol
0.77

0.97 -CH3 (acyl group) linolenic (or ω-3)

1.67, 1.59 -OCO;CH2;CH2- (acyl group)

1.77-1.75

2.07-1.99 -CH2;CHdCH- (acyl group)

2.35

2.75-2.73 dCH;CH2;CHd (acyl group) linoleic

2.77 dCH;CH2;CHd (acyl group) linoleic and linolenic

2.81-2.79 dCH;CH2;CHd (acyl group) linolenic

3.61 3.63-3.61

3.71 -CH2OH (glyceryl group) sn 1,2-diglycerides

3.81

4.07-4.05 >CH;OH (glyceryl group) sn 1,3-diglycerides

4.57-4.55 terpene

4.65 4.65 terpene

4.71-4.69 4.71-4.69 terpene

5.15-5.09 5.13 >CHOCOR (glyceryl group) sn 1,2-diglycerides

5.25 >CHOCOR (glyceryl group) triglycerides

5.37 -CHdCH- (acyl group)

5.75-5.71 5.73

6.23 6.23 phenolic compounds

6.27 6.27 phenolic compounds

6.37 phenolic compounds

6.47-6.45 6.45 6.47-6.45 phenolic compounds

6.61 phenolic compounds

6.71 phenolic compounds

6.79 6.79-6.73 phenolic compounds

6.85 6.85 6.85-6.83 phenolic compounds



5596 J. Agric. Food Chem., Vol. 58, No. 9, 2010 Alonso-Salces et al.

ACKNOWLEDGMENT

We thank the research groups that participated in the collec-
tion of the olive oil samples: Laboratorio Arbitral Agroalimen-
tario (Ministry of Agriculture and Fishery, Spain), General
Chemical State Laboratory D’xy Athinon (Greece), General
State Laboratory (Ministry of Health, Cyprus), and Departa-
mento de Quı́mica Orgánica, Universidad de C�ordoba (Spain).
We acknowledge N. Segebarth for fruitful discussions.

LITERATURE CITED

(1) Harwood, J. L.; Aparicio, R. Handbook of Olive Oil: Analysis and
Properties; Aspen: Gaithersburg, MD, 2000; 620 pp.

(2) Aparicio, R.; Ferreiro, L.; Alonso, V. Effect of climate on the
chemical composition of virgin olive oil. Anal. Chim. Acta 1994,
292 (3), 235–241.

(3) Lachenmeier, D. W.; Frank, W.; Humpfer, E.; Schafer, H.;
Keller, S.; Mortter, M.; Spraul, M. Quality control of beer
using high-resolution nuclear magnetic resonance spectroscopy
and multivariate analysis. Eur. Food Res. Technol. 2005, 220 (2),
215–221.

(4) Mannina, L.; Segre, A. High resolution nuclear magnetic resonance:
From chemical structure to food authenticity. Grasas Aceites 2002,
53 (1), 22–33.

(5) Woodcock, T.; Downey, G.; O’Donnell, C. P. Near infrared spectral
fingerprinting for confirmation of claimed PDO provenance of
honey. Food Chem. 2009, 114 (2), 742–746.

(6) Reid, L. M.; Woodcock, T.; O’Donnell, C. P.; Kelly, J. D.; Downey,
G. Differentiation of apple juice samples on the basis of heat
treatment and variety using chemometric analysis of MIR and
NIR data. Food Res. Int. 2005, 38 (10), 1109–1115.

(7) Baeten, V.; Pierna, J. A. F.; Dardenne, P.; Meurens, M.; Garcia-
Gonzalez, D. L.; Aparicio-Ruiz, R. Detection of the presence of
hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy.
J. Agric. Food Chem. 2005, 53 (16), 6201–6206.

(8) Yang, H.; Irudayaraj, J.; Paradkar, M. M. Discriminant analysis of
edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy.
Food Chem. 2005, 93 (1), 25–32.

(9) Lopez-Diez, E. C.; Bianchi, G.; Goodacre, R. Rapid quantitative
assessment of the adulteration of virgin olive oils with hazelnut oils
using Raman spectroscopy and chemometrics. J. Agric. Food Chem.
2003, 51 (21), 6145–6150.

(10) Yang, H.; Irudayaraj, J. Comparison of near-infrared, Fourier
transform-infrared, and Fourier transform-Raman methods for
determining olive pomace oil adulteration in extra virgin olive oil.
J. Am. Oil Chem. Soc. 2001, 78 (9), 889–895.

(11) Vaclavik, L.; Cajka, T.; Hrbek, V.; Hajslova, J. Ambient mass
spectrometry employing direct analysis in real time (DART) ion
source for olive oil quality and authenticity assessment. Anal. Chim.
Acta 2009, 645 (1-2), 56–63.

(12) Cajka, T.; Hajslova, J.; Pudil, F.; Riddellova, K. Traceability of
honey origin based on volatiles pattern processing by artificial neural
networks. J. Chromatogr. A 2009, 1216 (9), 1458–1462.

(13) Stanimirova, I.;
::
Ust€un, B.; Cajka, T.; Riddellova, K.; Hajslova,

J.; Buydens, L. M. C.; Walczak, B. Tracing the geographical origin
of honeys based on volatile compounds profiles assessment
using pattern recognition techniques. Food Chem. 2010, 118,
171-176.

(14) Vaz-Freire, L. T.; da Silva, M. D. R. G.; Freitas, A. M. C.
Comprehensive two-dimensional gas chromatography for finger-
print pattern recognition in olive oils produced by two different
techniques in Portuguese olive varieties Galega Vulgar, Cobranc-osa
e Carrasquenha. Anal. Chim. Acta 2009, 633 (2), 263–270.

(15) Martins-Lopes, P.; Gomes, S.; Santos, E.; Guedes-Pinto, H. DNA
markers for Portuguese olive oil fingerprinting. J. Agric. Food Chem.
2008, 56 (24), 11786–11791.

(16) Ranalli, A.; Contento, S.; Marchegiani, D.; Pardi, D.; Pardi, D.;
Girardi, F. Effects of “genetic store” on the composition and
typicality of extra-virgin olive oil: traceability of new products.
Adv. Hortic. Sci. 2008, 22 (2), 110–115.

(17) Reid, L. M.; O’Donnell, C. P.; Downey, G. Recent technological
advances for the determination of food authenticity. Trends Food
Sci. Technol. 2006, 17 (7), 344–353.

(18) Galtier, O.; Dupuy, N.; Le Dréau, Y.; Ollivier, D.; Pinatel, C.;
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